
The University of York
Department of Computer Science

Architectural and scalability issues in
hardware synthesis of high-level languages

Qualifying Dissertation

Ian Gray
iang@cs.york.ac.uk

5th September 2007



Abstract

The proliferation of embedded systems over the last decade has increased the de-
mands on system designers to create devices that are powerful and feature-rich
whilst remaining reliable, cheap and energy-efficient. New technologies such as FP-
GAs and high-density ASICs provide suitable implementation fabrics, but designer
productivity has not increased accordingly and almost all designs are still created
using low-level hardware description languages. To mitigate this problem, hardware
synthesis systems have been developed that attempt to translate high-level software
languages like C or Ada into an implementable hardware description. Whilst the re-
sulting increase in abstraction allows for more rapid development, current synthesis
techniques do not scale to allow the efficient creation of large designs. The designer
lacks control over the implementation architecture and cannot influence the synthesis
process. As a result, the use of high-level synthesis is currently limited to prototyping
or to the specification of small subcomponents.

This document examines the use of FPGAs as an implementation platform and how
they are related to the system-on-chip and network-on-chip design methodologies. It
then discusses the current state of hardware synthesis and examines the problems
that are encountered when using it. Techniques from the software domain are then
detailed that may help to resolve some of these issues. Reflection, aspect-oriented
programming, and metaobject protocols are considered.
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Chapter 1

Introduction

Embedded systems are application-specific computer systems that are deployed as
part of a larger machine. Unlike general-purpose computers they typically perform
only a small set of tasks that cannot be changed. Also, they are often transparently
integrated into their host systems so that the user is not aware of their presence.
Embedded systems are used in many different domains. Consumer electronics is
one of the commonest markets and they can found in common household items
such as mobile phones, microwaves, televisions and digital watches. The automotive
industry also makes extensive use of these systems to create engine management
or system diagnostic modules. They are even used in high-integrity systems, such
as aeroplanes, factories, medical devices and power stations. In general, almost all
digital devices contain some kind of embedded computer system.

Due to their intended applications, embedded systems often have a larger set of
design requirements than general-purpose computer systems. Their physical size
limits many factors such as processing power or the amount of available memory,
meaning that efficiency is very important. Similarly, embedded applications are often
battery-powered so they must limit the amount of energy they consume. As they
must interact with the outside world they are commonly subject to strict timing re-
quirements, leading to many embedded systems being classified as hard real-time
systems. [9] Designing such systems has always been a challenge, but it is becom-
ing ever more difficult as embedded technology enters more aspects of daily life and
systems become much larger and more complex.

Initially, the substantial cost associated with digital technology meant that computer
systems would only be used in situations that actively required computer control and
would be otherwise impossible if attempted by a human operator. One such example
is precision engineering, where a human would be incapable of the fine motor skills
required and so computer-controlled actuators are used. However as technology
progressed and the cost of microprocessors decreased, embedded systems were
integrated into more and more devices where computer control was not essential but
instead simply added new features or improved existing ones. Televisions, washing
machines, telephones and cars are all examples of this trend. As silicon technology
advanced further, processors became so cheap that they are now commonly used to
actually reduce the cost of a system. Often a large number of integrated processing
elements can be replaced by a single embedded CPU with no loss in computational
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1. Introduction

power, thereby reducing the overall build cost of the system. Indeed, the pervasive-
ness of embedded systems is so great that of the nearly 8.3 billion microprocessing
units shipped in the year 2000, 8.14 billion (98%) were used in embedded applica-
tions. [55]

Today, consumer expectation is increasing on a daily basis and the amount of func-
tionality that is embodied by embedded systems is constantly growing. Embedded
systems are required to become more powerful in order to meet these increasing de-
mands whilst still maintaining their real-time properties to ensure that reliability and
safety are not compromised. This makes the development of embedded hardware
and software more difficult and error-prone, thereby increasing its cost and time-to-
market.

The problem examined by this dissertation is that this increase in design size and
complexity has not been met by a corresponding increase in designer productivity.
Apart from in a few specific domains, designers must still use low-level circuit descrip-
tion tools to manually create their systems. This is time-consuming, error-prone, and
requires expertise and experience. In an attempt to mitigate these problems, high-
level synthesis systems have been developed that allow hardware design to take
place at a higher level of abstraction. Unfortunately, no current system is powerful
enough to have been adopted by mainstream designers. Current synthesis tech-
niques impose restrictions on the designer that do not scale when they are used
to describe entire systems, resulting in implementations that are either inefficient or
do not meet the non-functional constraints of the application. In this document, the
problem is examined further and potential solution areas are examined.
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Chapter 2

Literature Review

This section discusses the role of embedded systems and how they have devel-
oped over recent times, evolving into Systems-on-Chip (2.1.1) and Networks-on-Chip
(2.1.2). It then discusses FPGAs (2.2) and a number of techniques that are asso-
ciated with the use of them. The review then moves to concentrate on the ways in
which we can describe hardware designs with a software program, looking at both
Hardware Description Languages (2.3.1) and the hardware synthesis of high-level
programming languages (2.3.3). It then briefly discusses the topic of hardware/soft-
ware codesign (2.4) before moving on to metaprogramming techniques. The main
techniques mentioned are reflection (2.5), metaobject protocols (2.6), and aspect-
oriented programming (2.7.1).

2.1 Design of embedded systems

At the time when the first embedded systems were being developed, the available
fabrication technologies meant that only relatively small circuits could be built. Most
designs were presented in the form of a schematic diagram showing the circuit as a
design composed of logic gates or transistors. Software was not a concern because
something as complex as a microprocessor could not be manufactured in a way
that was small or cheap enough for its inclusion to be considered. Designing with
schematics was advantageous as it introduced no inefficiency and no further tools
were required to convert the design to a useable format for implementation in actual
hardware. However, the lack of abstraction meant that such schematic diagrams
were very difficult to work with when design sizes began to increase.

Since the development of the integrated circuit in the early 1960s and consequently
the microprocessor in around 1970, the logic density and effective computational
power of digital circuits has increased massively. Fuelled by this, the power and com-
plexity of embedded systems have increased similarly, and schematic-level design
is now no longer a viable option for most designers as it is too cumbersome to work
with. To remedy this, Hardware Description Languages (HDLs) were developed1 that

1In 1983 ABEL [1] was devised for targeting programmable logic devices but it was not until 1985 that
Verilog, the first modern HDL, was developed. VHDL followed in 1987.
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2. Literature Review

provide a higher level of abstraction and allow for large amounts of circuitry to be de-
signed using source code similar to a traditional programming language. (HDLs are
described more fully in section 2.3.1.)

2.1.1 The System-on-Chip paradigm

Previously, electronic devices were constructed using processing elements that were
each contained within their own separate integrated circuits (ICs). These ICs were
packaged in ceramic chips and communicated with each other over the routing on
a printed circuit board to which they were all mounted. However as the complexity
of embedded systems has continued to increase, it is now common to see ICs that
embody an entire system rather than a single component. Rather than implement a
single function, the ICs can now contain multiple logic cores all working in parallel to
solve a single goal with little external routing required. This has become known as
the concept of System-on-Chip (SoC), where a single device contains a number of
logical modules which interact to solve a given task. SoC architectures have arisen
because as silicon chip fabrication becomes more sophisticated, the circuits that can
be imprinted upon them are faster, smaller and cheaper than an equivalent printed
circuit board design. ICs often use less power and therefore generate less heat than
printed circuit boards [59] which can be advantageous for devices that are built to
operate on battery power. Finally, a SoC can be easier to design than the equivalent
PCB-based design as the designer does not have to consider track layout, off-chip
propagation delay or other extra-logical characteristics.

A particular challenge that arises from the SoC paradigm concerns the method of
communication between the individual IP cores that the system is comprised of.
This is commonly achieved by implementing ad-hoc bus architectures or by rout-
ing lengthy interconnecting wires across the silicon die. Whilst sufficient for the early
SoCs, such designs do not scale well because of their reliance on a globally syn-
chronised clock. Such a clock is difficult to support in a large system because of
propagation delay and routing requirements [3]. Bus-based systems can also re-
quire a large amount of power and generate a lot of heat as driving a signal onto a
bus involves asserting a large number of (often rather lengthy) communication lines.

2.1.2 From System-on-Chip to Network-on-Chip

To mitigate these problems, many newer SoC designs are moving away from buses
and employing on-chip networks instead. As discussed by Benini and De Micheli [3]:

“The most likely synchronisation paradigm for future chips is ‘globally-
asynchronous locally synchronous’ (GALS), with many different clocks.
Global wires will span multiple clock domains, and synchronisation fail-
ures in communicating between different clock domains will be rare but
unavoidable events.”

This describes a micro-network in which different modules of the SoC each form a
communicating node on the network. The crucial difference in the Network on Chip
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Figure 2.1: The Dally and Towles Network Architecture. The system is divided into a
2D grid of tiles with interconnection logic between the tiles to handle communication.
[14]

(NoC) concept is that each node is a separate timing domain and data transfer be-
tween nodes is performed asynchronously. The presence of multiple clock signals
affords designers a great deal of freedom and allows a number of the previously
mentioned limitations to be overcome. Primarily, the use of a network reduces the
problem of propagation delays between modules in the system by removing depen-
dence on a global clock.

Also, as different sections of the SoC can be driven by different clocks, the critical
timing paths of one section do not affect the paths of any other. This allows for parts
of the system to be clocked at a very high rate, even if there are some sections that
must be clocked slowly. Conversely, sections that do not require a high clock speed
can be driven slower to use less power and generate less heat. Most NoC designs
are based on a tiles, and one of the first such architectures can be seen in figure 2.1.

Tile-based networks are often proposed for NoC implementations because, as noted
by Dally and Towles [14], unlike standard shared-medium networks such as Ether-
net the available bandwidth of the network actually increases with the number of con-
nected nodes. They are also more amenable to techniques that add fault-tolerance or
adaptive load balancing due to the large number of available routes between sender
and receiver.

Current work in the NoC field is still primarily concerned with exploring potential archi-
tectures or protocols that are likely to be of use in this emerging design paradigm. Ze-
ferino and Susin [68] present a parametric architecture that can be adapted depend-
ing on the required network performance or available implementation area. More
powerful networks require a larger amount of interconnect and logic to implement
but they can support applications with higher bandwidth requirements. Wiklund and
Liu [58] proposes an architecture that is designed to support hard real-time systems
with strict bandwidth requirements. Rather than use a best-effort protocol to transmit
a packet as soon as possible, as in Ethernet, their proposed network establishes
virtual circuits based on an offline schedule to ensure communications will complete
before deadline. Kumar et al. [40] concentrate more on protocol development and
adapt the OSI model to create a four level communications stack that aids higher-
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level development. Pande et al. [49] considers the design of a network switch that
is particularly suited to NoC-style networks. They use wormhole routing in their net-
work and produce a design that is expected to consume approximately 2% of a large
NoC-based design.

The main weakness in much of the above work is that it is difficult to evaluate their
effectiveness in real-world situations, so theoretical examples are used instead. As
NoC is only just beginning to emerge as a valid design style, there are few existing
systems that are suitable for use as case studies or comparisons. As more and more
commercial systems are developed that use on-chip networks and the research field
matures, it will become clearer what the actual requirements of a commercial NoC
are and so therefore which NoC strategies show the most promise.

2.2 Field-Programmable Gate Arrays (FPGAs)

An FPGA is an example of a class of programmable logic devices known as gate
arrays. In a gate array architecture, transistors, logic gates, and other active devices
are placed in a regular lattice pattern and connected with interconnect wires. These
wires are configurable and can be arranged to connect the resources of the device in
a structured manner. By placing the interconnect lines correctly, a process known as
routing, the components on the device can be connected to form almost any desired
circuit.

FPGAs were initially developed in 1984 by Xilinx and were marketed as an alternative
way of evaluating ASIC designs. Previously, evaluating a designed circuit required
that either the design was manually built from connecting discrete components, or it
was fabricated as a custom-built ASIC. Both methods were time consuming and very
costly. FPGAs changed this by giving the designer an implementation fabric onto
which designs could be programmed. Evaluation could begin almost immediately,
and once errors were found and corrected the device could be reused. This proto-
typing method drastically increased the efficiency of ASIC design, but also opened up
new possible implementation methods. As the size and speed of FPGAs increased
and their unit costs decreased, more and more embedded systems were developed
that included an FPGA in the final circuit design, rather than an ASIC. This avoided
the heavy set-up costs associated with creating a custom IC and is very suitable for
products that are sold in low to medium volumes.

On a basic FPGA, the primary resources are Configurable Logic Blocks (CLBs),
interconnect and input/output blocks (IOBs). (See figure 2.2) CLBs make up the ma-
jority of the components on the FPGA2 and are used to create sections of logic that
implement the primary functionality of the device. They are constructed from Look-
Up Tables (LUTs) and flip-flops and can be programmed to perform one of a large
set of logical functions on their inputs. CLBs are connected to each other by pro-
grammable interconnect which can be configured to selectively route signals across
the FPGAs. In all modern FPGA architectures interconnect follows a hierarchical
model. The majority of interconnect is named ‘local interconnect’ and is constructed
from short wires that may only span a small number of CLBs. This is most commonly

2It is the vast amount of interconnect that actually consumes the majority of the silicon area of an FPGA
[7]
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2.2. Field-Programmable Gate Arrays

Interconnect

CLB

IOB

Figure 2.2: Simplified FPGA architecture showing CLBs surrounded by intercon-
nect and interacting with the outside world though IOBs

used to connect the inputs and outputs of adjacent CLBs to form a single large logic
function, such as a multiplier or shift register. In order to connect distant parts of the
FPGA, ‘global interconnect’ exists which is comprised of longer wires that may span
the entire width of the FPGA. Due to area constraints, global interconnect is much
less common than local interconnect and so can often be a very limited resource.
Finally, global clock nets are a special type of global interconnect which exist solely
to propagate clock signals throughout the FPGA. Due to the complex hardware in-
volved in reducing clock skew, there are generally only a few clock nets available on
a device, 4 on the Xilinx Spartan-IIe [64].

2.2.1 Advanced FPGA architectures

Whilst all FPGAs are comprised of LUTs and interconnect, modern FPGAs contain
a number of additional embedded modules for performing specialised tasks. These
allow for greater design flexibility as they operate at a high speed and can be used
to implement functions that would take up a great deal of the normal FPGA fabric.
These modules are often connected via switching blocks to the global interconnect
lines and can therefore be driven by any other part of the FPGA. Some of the more
common additional modules are described here.

For performing complex control operations or processing large amounts of data,
many high-end FPGAs include processor cores as part of their architecture. For
example, the Xilinx Virtex-4 [65] contains four PowerPC 405 cores. These cores
operate independently of each other and can be driven from different clock signals
if required. The surrounding logic presents the cores with information and collects
the results once processing is complete. Due to the fact that these cores are imple-
mented as embedded ASICs rather than derived from the normal FPGA fabric, they
can be clocked at much higher rates than most FPGA-based processor implementa-
tions.

Most applications require some form of memory to store programs or data. Whilst
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Figure 2.3: The standard FPGA design flow.

RAM can be synthesised by combining LUTs appropriately, this is a very inefficient
use of resources. As a result, distributed RAM is a common feature in modern FP-
GAs. In Xilinx FPGAs, the distributed RAM modules are called BlockRAMs and on
the largest Vertex-5 FPGA [66] there is over 11 megabytes of storage available to
the designer. Different FPGA families have different RAM layouts, with some favour-
ing a large number of smaller RAMs and others concentrating most of their memory
in a few large RAM banks. The initial contents of Xilinx BlockRAMs can be set from
the configuration bitstream when the device is programmed and each BlockRAM can
be arranged to have different widths and depths. For example it could be accessed
as n different 16-bit values, or 2n different 8-bit values. All Xilinx BlockRAMs are
dual-ported, allowing for two processes to access the RAM simultaneously, but this
is not the case for all FPGAs. The memory blocks on high-end Altera FPGAs can be
configured to operate in single-port mode, or to relinquish some storage capacity to
add extra access ports as required by the application.

In addition to embedded softcores and distributed RAM, many other design elements
are being integrated into FPGA fabrics. Some devices include dedicated multiplier
units that can perform calculations much faster than similar logic synthesised from
the CLBs, clock management circuits distributed across the FPGA help to manage
clock skew and create stable clock dividers and high-speed I/O modules such as
the Xilinx RocketI/O modules allow off-chip communication at 11 Gbit per second.
The use of these special design elements is normally controlled by the vendor’s
synthesis tools which attempt to infer when one of them may be of use to a design.
For example if the synthesis tools create a large enough multiplier, it may choose
to use an on-chip one rather than synthesise one directly from CLBs. However for
many design elements such inference cannot be used and elements like RocketI/O
transceivers or embedded processing cores must be manually instantiated using a
hardware description language like VHDL.

2.2.2 The FPGA design process

FPGAs store their current configuration in specially reserved configuration memory.
As this memory is volatile, the device must be reconfigured each time it is powered
up. In the situations when the device has not been loaded with a set of configuration
data, known as a bitfile, all user-accessible pins default to a high impedance state
and the device remains idle. The process of creating a bitfile to program an FPGA
with is described here and shown in figure 2.3.
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1. Design - The required design is expressed in a form that is acceptable to the
FPGA design tools. This may be a schematic, an EDIF netlist, source code
written in a hardware description language (section 2.3.1), or source code writ-
ten in a higher-level language that can, though the process of synthesis, be
converted to a hardware description language (section 2.3.1).

2. Translate - The user input is translated to logic gates, essentially converting all
forms of input to the schematic form.

3. Map - The resulting logic gates are mapped into CLBs and other atomic ele-
ments of the target FPGA fabric.

4. Implement - The design is implemented on the target FPGA. This stage, con-
sists of two main operations:

• Place - The mapped CLBs are placed onto the device. This is the first
point at which a design can be determined to be too large for the target
FPGA. The mapping algorithm will attempt to keep logically related CLBs
together to minimise routing. The placement algorithm is a version of the
bin packing problem and is NP-complete. [67] As a result this stage can
take a long time to execute and at times of high utilisation the placer must
resort to a simple exhaustive search.

• Route - The interconnect between the placed CLBs is finalised. The rout-
ing algorithm attempts to use the shortest interconnection lines possible
to reduce propagation delay and power consumption. Due to the large
amount of interconnection required by most designs, it is possible for a
design to fit onto a device at the placement stage but for routing to be
impossible due to lack of space. Again, this problem is NP-complete.

5. Bitfile creation - The placed and routed design is converted to a bitfile that
can be used to configure the target FPGA. The final bitfile can only be applied
to the exact FPGA model for which it was created, even different FPGAs from
the same family cannot share bitfiles.

Once this process is complete, the FPGA can be configured by loading the created
bitfile into its configuration memory. Different FPGAs provide different programming
interfaces but all modern FPGAs implement at least two main modes, a serial inter-
face and a JTAG interface.

The serial programming interface is simple and is used to program the device from
an attached memory chip very quickly. As previously mentioned, FPGA configuration
memory is volatile and so the device must be reconfigured every time it is powered.
As a result, if an FPGA is used in a complete system the configuration bitfile must
be stored in some form of non-volatile memory, such as a PROM. The PROM can
be connected to the FPGA via the serial interface and configured to transfer the
stored bitfile to the FPGA very quickly. Most FPGAs, including the Xilinx Spartan
and Virtex series, can automatically drive a connected memory chip to retrieve the
configuration bitfile without additional logic. Whereas the serial interface only allows
for bitfile transfer, the JTAG port [31] is a much more complex interface that can
also be used for readback and debugging. JTAG is standardised as IEEE 1149.1
and is used in many embedded systems to assist with debugging and maintenance
throughout the design and lifespan of the system.
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2.2.3 Partial Dynamic Reconfiguration

A major benefit of an FPGA-based implementation fabric is the ability to reconfigure
the device at runtime. Most systems that include an FPGA component simply con-
figure it once when power is first supplied and the running design remains the same
until the power is removed and the device shuts down. However, the configuration
engines of modern FPGAs are much more flexible than this and they allow a running
device to be stopped and reconfigured with a different bitfile, effective turning it into
a different circuit that implements a different set of functionality. This gives rise to
entirely new application areas and allows for an FPGA design which can respond to
a mode change or other significant event in the system by changing its behaviour
drastically. Effectively, this dynamic reconfiguration allows for a number of mutu-
ally exclusive features to be implemented on the same hardware at different times,
thereby reducing silicon area and power consumption.

A good example application of this ability is a video decoder system that supports
many different video formats. The system implements its decoding functions in hard-
ware as this is much faster than a software-based solution. However, a dedicated
ASIC is required to decode each different video format that it supports. If an FPGA
is used instead, then different configurations for the various formats can be stored in
a single ROM chip and then programmed in just before decoding commences. This
allows for the system to display the speed of a hardware-based implementation but
to support many different formats without dedicated hardware for each one. Also,
firmware updates can be issued to add support for new formats after the device has
been shipped.

Recent FPGAs also allow for a more fine-grained reconfiguration mechanism. Rather
than reconfiguring the entire device as described above, it is possible to load a partial
bitfile which only affects a subset of the device whilst the unaffected areas continue
to run. This technique is known as partial dynamic reconfiguration 3 (PDR) and was
introduced in the mid 1990s with the Xilinx 6200 FPGA[13]. Not all FPGAs support
PDR and those that do display differing capabilities depending on their architecture.
For example, the Xilinx Virtex-II must be reconfigured in whole columns whereas
the Virtex-4 relaxes this constraint and allows for individual tiles from a grid to be
independently reconfigured.

2.2.4 Applications of Partial Dynamic Reconfiguration

PDR has many theoretical uses that are related to the concept of ‘virtual hardware’.
By analogy to the concept of virtual memory, physical hardware could be made to
appear larger than it actually is by swapping circuitry in and out of the FPGA from
dynamic memory or magnetic storage (see figure 2.4). When a new feature is re-
quired by the system it is swapped in to the FPGA using PDR and activated. Later,
when it is no longer needed it can be removed to free up space and reduce power
consumption. Both of these operations need not affect the rest of the system and
the parts of the FPGA that are unaffected by the reconfiguration remain active at all
times.

3Different authors tend to use slightly different terms when describing this concept; other common
terms are ‘partial reconfiguration’ and ‘active partial reconfiguration’. This document will use ‘partial dy-
namic reconfiguration’, or PDR.
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Figure 2.4: Illustration of partial dynamic reconfiguration. Self-contained tiles of the
design can be swapped between the FPGA and external storage in the same way
that conventional virtual memory swaps pages of data between main memory and
magnetic storage.

Although PDR is still emerging as a design technique, numerous research projects
have begun to exploit its potential in the field of reconfigurable computing. A com-
mon paradigm that PDR is applied to is that of a custom instruction set processor.
Such a processor will generally provide a basic instruction set that is fixed but not
very expressive and then the system designer can create new instructions that are
dynamically loaded into the CPU when their opcodes are encountered at runtime.
A classic example is the Dynamic Instruction Set Computer (DISC) [60]. DISC is
entirely implemented on a standard FPGA, using a portion of the device as a fixed
execution controller and the rest of the device as space in which to store custom
instructions. Analysis of DISC shows that whilst the speed up obtained when per-
forming general-purpose computing tasks is modest, application-specific tasks can
be accelerated by up to 24 times by carefully selecting custom instructions that would
be heavily used by the target application.

The Chimaera reconfigurable processor [28] is more of a hybrid approach. Chimaera
is an ASIC-based CPU which contains an amount of embedded FPGA-style reconfig-
urable hardware. Chimaera uses this reconfigurable hardware to store the execution
units of custom machine instructions, whilst the ASIC section performs all standard
operations. Hauck et al. claim speed ups of up to 160 times in their system, but
in reality such impressive results can only obtained in rather artificial circumstances
with carefully hand-mapped examples. The authors state that general-purpose com-
puting can be shown to be accelerated by approximately a factor of 2, but this is
mitigated by the inevitable slowdown that is observed when moving from an entirely
ASIC processor to an FPGA-based design. PDR has also been used to create a
reconfigurable co-processor that sits alongside a standard CPU [29].

Marescaux et al. [43] and Huebner et al. [30] both propose NoC-based designs that
may allow PDR to be used in a more general sense than the systems above. When
an FPGA is partially reconfigured, care must be taken to maintain routing amongst
all parts of the device that are still active. If an interconnection route passes through
an area that is reconfigured then the connection will be broken. Reconfigurable pro-
cessors avoid this by constraining the type and size of designs that can be swapped
into the FPGA, whereas these network-based systems proposed attempt to relax
this constraint and allow for general-purpose hardware to be swapped as required.

Currently, PDR is only employed in academic situations and has not been adopted
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for commercial or industrial systems due to a number of reasons. Primarily, because
the concept is still relatively recent there is only limited tool support for PDR. Xilinx’s
PlanAhead hierarchical design tool attempts to simplify PDR but it is still considerably
more difficult to use than a standard static design. As a result many designers will
be discouraged from using what can be viewed as experimental technology. Also, a
system that uses PDR can be difficult to verify from a safety-critical point of view due
to the fact that during reconfiguration the device exists in an unknown state. After
completion, extreme care must be taken to avoid metastability and other undesirable
effects. Despite its potential benefits, it is unlikely that PDR will become a main-
stream implementation choice until tool support has matured and at least some of
these problems can be handled automatically.

2.3 Describing hardware with software

2.3.1 Hardware description languages (HDLs)

As mentioned in section 2.1, as the size and density of digital circuits develops it
becomes increasingly impractical to describe them using schematic diagrams alone.
The gate count of modern processors is measured in the tens of millions and a
complete schematic diagram would be unmanageably large. Also, the poor level of
abstraction afforded by schematics makes working with such diagrams difficult and
error prone. To counter these problems, hardware description languages (HDLs)
were developed. HDLs are a software-based technique for describing the arrange-
ment of elements in a digital circuit. They describe the circuit’s operation and organ-
isation and frequently they can be used to simulate the described circuit and thereby
verify its design. HDLs are a higher level of abstraction than schematics as they
include notions of time and parallelisation. HDLs that express nothing more than the
connections between circuit elements are called netlist languages, the most com-
mon example of which is EDIF [18]. Netlist languages are often used for storing
schematics in a digital format and are notionally equivalent in terms of abstraction
and complexity.

HDLs are implemented as standard textual languages that resemble software source
code. A tool called a synthesiser is used to transform the HDL design into a netlist
that can then be implemented as an ASIC or on an FPGA. This process is similar
to compilation of standard source code and undergoes many similar steps, such as
syntax checking, tokenisation and the generation of an abstract syntax tree. HDLs
are easier to work with than schematics as they allow the designer to express rela-
tively complex concepts that can be automatically translated to actual hardware by
the synthesis tools. For example, the statement:

result <= (x + y) * z;

will automatically synthesise an adder and a multiplier of the correct widths and con-
nect them as shown in figure 2.5.

The two most common HDLs that are in use today are VHDL [11] and Verilog [16].
They both provide a rich expressive environment for designing digital circuits and
are widely supported by industry-level toolsets. VHDL (VHSIC Hardware Description
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Figure 2.5: Pseudo-schematic showing the result of synthesising
result <= (x + y) * z;.

Language) was initially developed as a way of documenting the behaviour of ASICs,
but has now grown into a tool for designing, simulating and synthesising them also.
As a result only a subset of VHDL can be directly synthesised to hardware, the rest
of the language can only be simulated. VHDL was designed to be similar in style to
the Ada programming language [2] and so it shares a very similar syntax, is case
insensitive and is strongly-typed. Verilog, in contrast, was designed to be familiar to
C programmers so it is case sensitive and uses a preprocessor. As with VHDL, only
a subset of Verilog is synthesisable.

Both languages differ fundamentally from their procedural language counterparts,
however. Ada and C are both imperative languages whereas VHDL and Verilog
are declarative. This means that whilst in a standard programming language two
consecutive statements are executed one after the other, in a HDL they are generally
executed in parallel. This is because each statement describes a hardware element
that is operational at all times. The designer must implement state machines and
other techniques in order to achieve sequential execution.

Both languages offer support for structured system-level design because a designer
can describe a component using high-level parts of the language that are outside
their synthesisable subset. Whilst this code cannot be automatically synthesised to
hardware, it can be simulated and and verified so the designer can be sure that the
behaviour of the component is correct before attempting to express it as synthesis-
able code.

2.3.2 SystemC

A hardware-oriented language that is very well supported by industry today is Sys-
temC. An IEEE standard, SystemC [32] is a system description language that can be
used to design and simulate systems at multiple levels of abstraction. It is based on
C++ [21] and implemented as a large library of classes and macros, thereby keeping
the same syntax as C++. It can be viewed as both a hardware description language
and a simulation language, as whilst its main aim is to verify the design of a system,
a subset of the language can be synthesised directly to hardware. However, Grimpe
and Oppenheimer [26] notes that the synthesisable subset of SystemC is equivalent
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in terms of expressive power to that of VHDL or Verilog, so it does not offer an extra
layer of abstraction in the final hardware description.

SystemC models concurrent processes as ‘modules’ and describes the communi-
cations between them using a library of built-in primitives or user-defined composite
types. System composition is modelled by ‘ports’, which are the connection points
between which modules can exchange data. Transaction-level modelling can be
used to describe these interactions between system components at a high-level of
abstraction, and so simulation of the modelled system is often much faster and more
comprehensible than VHDL or Verilog. Finally, one of the main strengths of SystemC
is that it allows the designer to describe a system in very high-level abstract terms
and verify it quickly through simulation. Then, in order to implement the design in
actual hardware, individual components can be elaborated and a reification for each
one created independently. Whilst this design style is also possible in VHDL and
Verilog, SystemC provides more advanced modelling constructs and simulation is
much more efficient.

Most of the criticisms of SystemC are related to its base language, C++. As C++ is a
sequential language, describing concurrency and timing properties requires the use
of preprocessor macros and library calls that can seem counter-intuitive, whereas in
other HDLs these constructs are first-class parts of the language. This can be seen
in figure 2.6, a SystemC description of a NAND gate. Many preprocessor macros are
used (SC_MODULE, SC_CTOR...) in order to implement syntax that is not available in
normal C++. Also, due to fact that SystemC is attempting to make C++ appear to be
a declarative like VHDL or Verilog, it can be difficult to separate code that actually
describes hardware from code that exists solely to aid the simulator. Figure 2.7
shows an equivalent VHDL description for comparison.

Also, as noted by Edwards [17] it is quite easy to inadvertently develop a non-
deterministic SystemC model due to the fact that the simulator must mimic true con-
currency on a sequential processor. This leads to a slightly different execution order
each time the simulation is run, and so race conditions can develop when global vari-
ables or shared resources are used. This can be difficult to detect from the simulator
without extensive testing and so the bug will only be discovered when the system is
fully implemented in hardware.

2.3.3 High-level language synthesis

Whilst hardware description languages greatly aid the design of embedded hard-
ware, newer design trends are beginning to strain current techniques. With the move
to architectures based on the Network-on-Chip (section 2.1.2) paradigm and the
increasing size of modern embedded systems, the current level of abstraction af-
forded by HDLs such as VHDL and Verilog is starting to prove insufficient. Current
HDLs force the designer to express the functionality of their system in terms of state
machines and interacting parallel processes. This works well for low-level modules
that must interact with other off-chip device, but for larger modules and for general
system-level behaviour it can become difficult and is a barrier to code maintainability
and reuse.

As a result, there has been a great deal of research into the field of high-level lan-
guage synthesis. The aim of such research is to increase the abstraction level of
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#include "systemc.h"

SC_MODULE(nand2) // declare nand2 sc_module
{

sc_in<bool> A, B; // input signal ports
sc_out<bool> X; // output signal ports

void the_nand2() // a C++ function
{

X.write( !(A.read() && B.read()) );
}

SC_CTOR(nand2) // constructor for nand2
{

SC_METHOD(the_nand2); // register do_nand2 with kernel
sensitive << A << B; // sensitivity list

}
};

Figure 2.6: A SystemC specification of a two-input NAND gate.

use ieee.std_logic_1164.all;

entity nand2 is port
(

a,b: in std_ulogic;
x: out std_ulogic

);
end nand2;

architecture struct of nand2 is
begin

process (a,b)
begin

x <= a nand b;
end process;

end struct;

Figure 2.7: A VHDL specification of a two-input NAND gate.
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synthesisable HDL code, thereby making it simpler for the designer to create large
systems without having to consider low-level implementation issues. Such high-level
languages attempt to provide more expressive power than is afforded to the designer
by standard HDLs. For example, this may include support for object orientation,
transaction modelling or automatic generation of state machines. There are a num-
ber of high-level languages that can be synthesised to hardware, this section will
detail some of the more commonly seen examples.

2.3.4 Handel-C

Handel-C [6] is a programming language developed by Celoxica for rapid prototyping
of hardware designs to FPGAs and ASICs. It is implemented as a subset of ANSI C
with a number of extensions that allow for parallelism and communication between
parallel blocks. Due to Handel-C’s stated goal of rapid prototyping, it does not allow
the designer as much control over the implementation strategy as standard HDLs.
Instead, it allows for more abstract concepts to be defined in code that looks very
similar to standard sequential C. All state machine and control flow hardware is in-
ferred and generated automatically by the Handel-C synthesiser. This means that
an off-the-shelf solution that is written in ANSI C can often be synthesised directly to
hardware, after minor rewriting for the conversion to Handel-C.

The process of synthesising Handel-C to hardware is very similar to the way in which
normal C is compiled to object code. The compilation strategy is basically recursive
descent, but rather than recursively generating machine code the synthesiser gener-
ates small hardware blocks which are recursively connected together. The resulting
circuit is expressed in the EDIF format which can then be optimised by any number of
tools before the design is converted to an FPGA bitfile by vendor-specific toolchains.

The Handel-C design process is fundamentally different to the way in which a circuit
is built up with a hardware description language such as VHDL. As mentioned previ-
ously, VHDL is a declarative language whereas Handel-C (like its parent language C)
is imperative. As a result, to describe two events that occur sequentially can be dif-
ficult in VHDL as a one-hot state machine must be described that switches between
the two events in the correct order.

process Do_The_Tasks(clk, current_state)
begin

if (clk’event and clk = ’1’) then
if (current_state = 1) then

Do_Task_One;
elsif (current_state = 2) then

Do_Task_Two;
end if;

end if;
end process;

process Change_State(clk)
begin

if (clk’event and clk = ’1’) then
if(current_state = 1 and Task_One_Finished) then

current_state <= 2;
end if;
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end process;

In Handel-C this is much simpler because state machines are automatically inferred
by the synthesiser and the inherently sequential nature of C can be exploited by
simply calling the two items one after the other.

void main(void)
{

Do_Task_One;
Do_Task_Two;

}

Like most standard programming languages, normal Handel-C designs can only in-
clude a single clock source. The reason for this is that Handel-C was designed to
have a very predictable timing model and the provision of multiple clock sources
would undermine this aim. It is possible to make use of multiple clock sources in
a Handel-C project but this is achieved by creating multiple designs, each with its
own void main(void) function, and then linking them together using the Handel-
C IDE. The designs can then export and import communication channels to share
data asynchronously. This approach is quite limited because the encapsulation of
design units is performed outside of the language and it gives no scope for modular
composition, meaning that designs cannot be nested. Also, only channels can be
shared between designs; variables, signals, interfaces and functions cannot.

There are a number of problems with Handel-C that limit its potential for exclusive
use in the embedded systems market. First, as previously mentioned Handel-C has
a very simple timing model that is intended to produce circuits with easily predictable
performance characteristics. Essentially, the model states that “every assignment
and communications statement takes one clock cycle, everything else has no cost”.
[57] This means that all assignments will take the same amount of time and so it
is possible to inadvertently reduce the maximum speed of the entire circuit by intro-
ducing a single statement with a large propagation delay. This is illustrated in the
following example:

void assignments(void)
{

x = a + b;
y = a >> 3;
z = (a * (b + c)) / (d * e);

}

In this example, all three assignments take exactly one clock cycle. However, the
assignment to z describes a large circuit with a significant propagation delay. If this
is the longest path in the circuit then the maximum clock rate of the entire design
is reduced. To avoid this, the programmer must manually split the assignment into
multiple stages. This splitting cannot be done by the compiler as it would change the
semantics of the program, and a statement that originally took one clock cycle would
take longer.

Related to this problem is the fact that even though Handel-C appears to be stan-
dard C, it is in fact targeted at a very different implementation. Consequentially, a
programmer who forgets this and writes in the style that they would for normal C
will end up with an inefficient design. This can be seen when comparing loop ter-
mination constraints in the two languages. In C it is common to compose a loop as
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such: for(x=0; x<10; x++). However it is more efficient in Handel-C to replace
the less-than comparator with an inequality check: for(x=0; x!=10; x++). The
inequality check is a simpler circuit than the comparator that is required by the less-
than operator and so it results in a smaller design. Finally, due to its reliance on
standard C, Handel-C lacks real modular decomposition or encapsulation making it
difficult to use when producing larger designs and limiting the language’s potential
for code reuse.

2.3.5 Other synthesised languages

Aside from those already presented there are a number of other languages that are
targeted at hardware rather than at object code, but few have reached the level of
commercial acceptance that Handel-C has attained.

The York Hardware Ada Compiler (YHAC) [57] has shown success in retargeting the
Ada language to generate hardware designs in the form of EDIF netlists. (Ada is a
very large language so only the Ravenscar subset [8] is implemented.) YHAC trans-
lates sequential Ada into hardware by generating one-hot state machines for each
procedure. Unlike Handel-C, these state machines allow for individual operations
to take multiple clock cycles, thereby reducing propagation delay in the final design
and maximising potential clock speed. However, the inefficiency of a one-hot imple-
mentation style means that circuit scalability can be reduced and sizable programs
can often be translated into very large circuits. YHAC can make use of Ada’s native
support for concurrency and will create a new state machine for each task, giving the
programmer access to true parallelism. Therefore, YHAC implements Ada’s coarse-
grained concurrency model instead of the fine-grained model found in Handel-C.

Work by Cardoso and Neto [10] attempted to translate Java bytecodes into a dedi-
cated hardware circuit that can be implemented on runtime reconfigurable hardware.
The technique uses temporal partitioning, which separates bytecodes into graphs
that do not need to occupy the device at the same time. Then, the system attempts
to generate separate circuits for each temporal partition that then can be executed
by a reconfigurable framework which implements the virtual hardware paradigm (dis-
cussed in [41] and [25]). The system extracts control dependency graphs, data de-
pendency graphs and data flow graphs from the bytecodes and uses them to create
the partitions. Problems with this approach are centred around its use of Java byte-
codes as an input source. The translation of sequential byte codes to hardware can
be rather inefficient as it results in circuits that are influenced more by the design
of the Java virtual machine than by the source code from which they were gener-
ated. For example, the work does not make reference to custom datatypes, a one of
Handel-C’s strongest features. In Handel-C, if an integer will only ever take 4 values
it is possible to implement it with only 4 bits rather than the default 16. This results
in significantly reduced circuit size because all calculation units that operate on this
variable need only be a quarter of the width. With the byte code approach, there is
no way to carry this bit width information from the programmer to the compiler and
so default implementation widths must be assumed.

Lava [4] takes a different approach to the languages above by using the Haskell func-
tional language to describe circuits rather than an imperative language like C or Ada.
Functional programming is based on the notion of computation as a series of func-
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tion evaluations with little or no persistent state, as opposed to imperative languages
that rely on a global state that is affected by procedures and subroutines. It is argued
that functional programming is a better paradigm to describe hardware that performs
digital signal processing due to the lack of state information in such designs. Lava
works by embedding VHDL-style code in low-order functions and building a type sys-
tem on top of this to ensure consistency. Higher-order functions can then be used
to succinctly describe regularity that would ordinarily involve repetitive VHDL code
(such as when describing look-up-tables, or densely-connected networks). As a re-
sult, Lava is very well suited for defining both the structure of a design and the way
in which it is composed from smaller sections.

Lava allows for functions to have different interpretations, where only one of these
creates an actual netlist. Other interpretations instead allow for designs to be simu-
lated and verified. As Lava is a functional language, it is best used for describing
circuits that could be considered pure functions, such as arithmetic operators or
fourier transforms. As a result, Lava is not as much a general-purpose HDL as it
is a domain-specific one. The scalability of such a system to support large designs
is unclear as Lava’s supporting literature states that the largest circuit it has been
used to describe is a 128-bit wide combinatorial multiplier.

2.3.6 Summary

In summary there is currently no hardware-targeted language that that does not im-
ply rather severe restrictions on the type of system that it can build efficiently. For
example, Handel-C is good at creating circuits that are described by its one-hot state
machine implementation strategy, but for designs that are best implemented using
mainly asynchronous logic it can only describe an inefficient solution that is unnec-
essarily large and takes longer to execute than required. Similarly, Lava is based on
a function composition paradigm that describes signal processing circuits well but
cannot express state easily. This is a common problem with synthesis systems as
they can only create circuitry using a single implementation strategy and, outside of
a few pragmas, there is no language that allows the designer to override this to better
suit their current project.

Unlike high-level synthesis, Hardware Description Languages give the designer the
power to create almost any circuit that they require, but not without committing con-
siderable effort to both development and verification. The end result is that high-level
synthesis is desired for its speed and power when compared with HDLs, but it of-
ten cannot be used because it does not allow the designer enough control over the
generated hardware. Instead, a hybrid solution may be employed. For example,
high-level synthesis can be used to design the main processing cores of a circuit but
their communications infrastructure may be described with an HDL such as Verilog.

It appears that high-level synthesis has hit a self-imposed limit and it will not improve
without a change in the way it is realised. As mentioned above, synthesis works well
within a narrow design space, but rapidly diverges from the optimal solution outside
of this space, to the point where often large classes of designs cannot be imple-
mented at all. A reason for this is that it is impossible to automatically synthesise a
design artifact that cannot be directly expressed by the source language. For exam-
ple, C is a single-threaded language with no concept of parallelisation or inter-task
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Figure 2.8: A common problem with undirected place and route. The last two
wires of the CPU-memory bus are routed around a third component, resulting in a
mismatched bus.

communication. As a result, Handel-C can only synthesise circuits that make use of
these concepts through its extensions to C that enrich its original semantics.

These language extensions may be tempting, but they cannot completely bridge the
semantic gap between design space and implementation fabric because both are
changing at a pace that is far more rapid than that of the language. For example, the
globally-asynchronous, locally-synchronous design paradigm was not of wide com-
mercial interest ten years ago but is now recognised as an important new direction.
As a result, new classes of hardware designs are required that are poorly covered
by languages like Handel-C. Also, these designs may be implemented on currently
unseen hardware because FPGAs are constantly developing with the introduction of
new embedded cores or different communication methods. Extensibility of synthesis-
based languages is therefore something that requires further investigation.

Finally, a problem common to both high-level synthesis languages and HDLs is that
they rarely allow the actual physical layout of the design to be specified. They con-
centrate on describing functionality and a separate place and route tool is used to
determine the actual physical location of the constituent circuit elements. The de-
signer does not control this and the placer does not have access to any high-level
structural information, only a netlist that is output from the synthesis tool. Often this is
sufficient, but there are some situations when the designer needs to influence plac-
ing decisions. For example, it is often desirable to keep all wires of a bus running
approximately parallel so they are of similar length and therefore display a similar
propagation delay. If bus wires are mismatched then signal synchronisation issues
can arise leading to data transmission errors. However, as most place and route
tools do not have access to structural information, it can be hard to infer that a cer-
tain eight signals comprise a bus and should therefore be routed together. Instead
the wires are routed individually and this can lead to the situation shown in figure 2.8.

2.4 Hardware/software codesign

Hardware/software codesign is an active field of research which is primarily moti-
vated by the observation that, for most embedded systems, much of their functional-
ity can be either implemented as dedicated hardware or as a software routine running
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Figure 2.9: The target architecture of classical hardware / software codesign

on an embedded microcontroller. Both approaches carry inherent advantages and
disadvantages and codesign attempts to balance these to find a sufficient design
that meets restrictions placed on various metrics such as execution time, hardware
density, power consumption or build cost.

In the classic description of codesign [61], the operation of a system is specified in an
implementation-independent way along with a quantitative list of requirements that
the final implementation must meet. The codesign engine then creates the hardware
/ software partition by assigning the various functions of the system to either hard-
ware or software. The hardware functions are synthesised to dedicated hardware
and the software functions are compiled to opcodes for execution on a predeter-
mined processor core. Once these processes are complete, the entire system can
be evaluated by a cosimulation engine that returns a set of performance metrics. If
these metrics show that the system does not meet its specification the process is
repeated. This time, however, the hardware / software partition is moved and so the
implementation method for some functions is changed. This new implementation can
then be regenerated and reevaluated until a solution is found that meets the system’s
initial constraints.

The target architecture for such classical codesign systems involves a single shared
system bus, upon which sits a single CPU (to execute the software tasks), a number
of custom hardware co-processors (to implement the hardware tasks) and a block
of shared memory (see figure 2.9). More recent work has reduced this restriction;
for example work by Niemann and Marwedel [47] describes a system that supports
multi-processor architectures and Kalavade and Lee [33] examines the partitioning
problem when applied to more general architectures.

Due to the lack of a truly implementation-independent language for expressing a
system’s functionality, all codesign frameworks must be either software-based, or
hardware-based, depending upon the format in which the design is initially speci-
fied. In a system such as Cosyma [22], the entire design is described in a specially-
created superset of C called CX. CX is still a software language, it simply augments C
with a few necessary concepts, such as that of tasking. Therefore, initially a Cosyma
design is entirely implemented in software. When the system is run, it uses a speci-
fied cost function to evaluate the design and then begins to automatically move parts
of the code into dedicated hardware through the use of a synthesis engine. It uses
the simulated annealing algorithm to search for a partition that meets the design
requirements.
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Conversely, the work by Gupta and De Micheli [27] is hardware-based because the
initial system specification is a circuit design written in the language HardwareC.
HardwareC, as its name implies, adopts most of the semantics and syntax of C but is
modified to allow unambiguous hardware modelling. It resembles VHDL in part as it
is a declarative language based on processes and blocks and it handles concurrency
natively. In this work, only when the system cannot meet its stated requirements are
sections of hardware moved to the software partition. This is achieved by translating
from HardwareC to standard C using a code generation engine and then compiling
the new code for a generic microprocessor. Despite their differing approaches, both
Cosyma and the work by Gupta and De Micheli achieve similar levels of overall suc-
cess, with acceleration factors ranging from no difference up to approximately twice
as fast depending on the specific application.

2.4.1 Problems with codesign

There are a number of barriers to progress in the codesign field, but perhaps the most
pressing is that the task of searching all possible partitions for an optimal solution
is intractable and requires an exhaustive brute-force search in the general case.
Codesign can be considered to be a search problem and so Wolpert’s “No Free
Lunch” theorem [62, 63] can be used to state that the problem of codesign can never
be simply ‘solved’ in the general case. There is no single search algorithm that will
be able to perform better than an exhaustive search of all possible partitions for every
possible problem. As a result, heuristic-based search algorithms must be used and
it is this that has been the focus of much recent work. [19, 20, 34, 56] It should be
noted that this problem can be slightly mitigated in practice, as the optimal solution
is rarely required, merely one that is good enough to meet the system requirements.

Secondly, most codesign frameworks rely on an accurate measurement of the per-
formance metrics of the partitioned design to guide their heuristic search. In other
words, the system makes decisions commonly based on the worse-case execution
time (WCET) of both code and hardware and the expected size of compiled code
and synthesised hardware. There is a massive body of work concerned with calcu-
lating the WCET of software but such analysis is very time consuming and relies on
the target code being relatively small, written in an analysable language, compiled
with a simple compiler and executed on a predictable CPU with a minimal amount
of caching, branch prediction or otherwise complex behaviour. Also, WCET analysis
is rarely automatic. Indeed, Ernst et al. [22] note that Cosyma incorrectly predicts
the outcome of compiling CX code due to the aggressive optimisation routines of the
gcc compiler, and this can lead to a design that performs worse than before it was
partitioned.

Similarly, it is difficult to accurately predict how large the outcome of hardware syn-
thesis will be without actually performing it. For example, a design that uses many
4-input logic gates will take up more space on an FPGA with only 2-input LUTs than
on an FPGA with 4-input LUTs. Without this level of implementation-specific knowl-
edge any utilisation estimates can easily be incorrect. These analysis errors mount
as the size of the design increases, making the codesign framework increasingly less
effective. Similarly, it can be very difficult to predict the effect of communication and
synchronisation delay in a partitioned system, and a few sources of such delay can
negate the speed up that would otherwise be gained [61].
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Currently, automatic codesign frameworks do not scale to work effectively on sys-
tems that are large enough to be of commercial interest. Some of the scalability and
tractability problems must be solved before production-level embedded systems can
benefit directly from such work.

2.5 Reflection

Computational reflection dates from Brian Smith’s work in the early 80s [53] and
has been described by Malenfant et al. [42] as a natural extension of the recurring
trend in Computer Science to move towards languages with ever later binding times.
Reflection is described as:

“...the ability of a program to manipulate as data something representing
the state of the program during its own execution. Introspection is the
ability for a program to observe and therefore reason about its own state.
Intercession is the ability for a program to modify its own execution state
or alter its own interpretation or meaning. Both aspects require a mecha-
nism for encoding execution state as data; providing such an encoding is
called reification.” [15]

There are two commonly identified aspects of reflection; structural reflection and be-
havioural reflection. Structural reflection allows a program to examine, reason about,
and modify its own structure and all the abstract data types it uses. Informally speak-
ing this means it can rewrite its own source code at runtime. Behavioural reflection
does not change the actual code but instead affects its meaning and semantics.4 For
example, a C program including the line:

X = 2 * 3 + 4;

would execute leaving the value of X equal to 10. However, behavioural reflection
may alter the language’s precedence rules during execution so the meaning of the
expression changes, the addition is calculated first and it now evaluates to 14. Alter-
natively, the meaning of the + symbol may be changed to represent subtraction and
so result is evaluation to the value 2.

There does not exist a precise definition of what it means for a language to be re-
flective. This problem is further compounded by the fact that the implementation of
reflection makes use of a number of techniques that existed before reflection became
a research topic in its own right. (For example, the ability to manipulate programs
as data, to inspect data structures at run-time, and to reason about metaobjects.)
Therefore it is impossible to classify a language as reflective purely by considering
the techniques it employs. Instead the intent and design goals of the language are
often used, with Smalltalk (see section 2.5.1) being a commonly cited example of a
language that was designed from the beginning to be reflective.

Absolute reflection is rarely achieved because if the concept is followed as far as
theoretically possible the result quickly becomes unmanageable. For example, the

4As noted by [54] and others, reflection lacks a precise formal definition and so it is likely that the terms
used in this section may appear elsewhere in slightly different contexts. This document attempts to use
the terms in the most common way that they are presented.
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Figure 2.10: The Smith and des Rivières reflective tower. Note that these authors
used the term ‘reflective processor program’ rather than interpreter to emphasise
that interpretation is not required by reflection.

more powerful aspects of behavioural reflection are commonly implemented using
run-time interpretation. However in an entirely reflective language the interpreter it-
self has a reification which can can be reflected upon. Therefore it becomes possible
to create an altered interpreter, which must be run through a lower-level interpreter
as a result. However, as this lower-level interpreter also has a reification it is pos-
sible to reflect on this also. This results in a theoretically infinite structure called a
reflective tower, where each meta-level of interpretation implements the layer below
it. Malenfant et al. [42] (see figure 2.10) Whilst a pleasing theoretical concept, it is
debatable whether programs can be successfully written to make use of such power.
Note that whilst interpretation is used here as an example technique for implementing
reflection, it is not required and other methods are available.

There are a number of scenarios that benefit from the use of reflective techniques,
but one of the most important is that intercession and behavioural reflection can al-
low a source language to influence the way in which it is implemented. In languages
that support a high degree of reflection, the compiler itself is available to be reflected
upon. This allows for a specific function to affect its own compilation and to con-
trol the opcodes that are eventually produced from the compilation process. For
example, if a normal program is to be executed on a new processor with a custom
instruction set then a new compiler would have to be written in order to generate
correct object code. However, reflection allows this to be done from the source code
level, maybe by simply including a new library that describes the desired instruction
set architecture.

Kiczales et al. [37] give a further example of why it can be useful to control a lan-
guage’s implementation. Consider the following two records:

type point is
record

x : Integer;
y : Integer;

end record;
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type person is
record

surname : String;
forename : String;
age : Integer;

...
--Many more data items

...
end record;

The point record has only two components and both are always populated with
data. As a result its entire storage allocation is always used and access to both
items must be fast. The person record however contains many data items which
are empty, as the data items that are held on each person are different. Therefore,
the record rarely uses its entire space allocation. Whilst the point record would
benefit from an internal implementation that uses an array, the person record might
be better implemented with a hash table. However, with a fixed language without
reflection the compiler will treat both the same and use identical implementations,
resulting in a compromise. Reflection allows the programmer to control the imple-
mentation style used and thereby increase the efficiency of the final program.

Another situation that benefits from reflection is where a program must interact with
previously unseen classes and methods. This could occur in an operating system
when it loads new programs, or in a web application that communicates with clients.
Introspection makes it possible for the system to examine the available classes and
methods of the new code and determine the best way to proceed, without requiring
access to source code. It also allows the system to check for potentially unsafe
behaviour in new code before executing it.

Reflection also introduces the possibility of runtime self-optimisation. For example, it
is possible to create a system that profiles its own execution and reacts to improve
its efficiency by altering its own implementation. This allows for a greater range of
optimisations than traditional techniques because program flow in a non-reflective
language can only diverge at points where the programmer has explicitly defined it
(such as at if statements). In a reflective system it can happen anywhere. Simi-
larly, reflection is also a powerful technique for implementing Metaobject Protocols
(section 2.6 and the Aspect-Oriented Programming paradigm (section 2.7.1).

Clearly the main problem with reflection is that it can become very complex, and it
can be difficult to use some of the power that it affords. Also, verification of reflective
programs is currently an open problem as it is unclear as to how to reason about
source code that can alter itself at any time. [52] Finally, many reflective systems
must be interpreted in order to be implemented, which can result in a rather slow
implementation. This is not the case for all systems, however, as careful restrictions
on the reflective facilities available can allow a system to be compiled.

2.5.1 Smalltalk

Smalltalk5 is an object-oriented, reflective language that was created at Xerox PARC
during the 1970s. It bears a number of conceptual similarities to Lisp in that it is
almost entirely written in itself, and is organised using meta-level objects that repre-
sent most parts of the language, including the classes, methods, compilers and even
stack frames. Smalltalk has one of the most complete sets of reflective facilities of

5See http://www.smalltalk.org

28



2. Literature Review

any language in widespread use [51] and only avoids the provision of total reflection
because of efficiency reasons.

Smalltalk was the first language to make the claim that in its object system truly
everything is an object. Whilst languages such as Java are eventually built upon
integral types that are ‘boxed’ into objects, in Smalltalk everything from numbers to
blocks of code are first-class parts of the object hierarchy. All integers are singleton
instances of the class Number and have their own methods that can be called. For
example, the Number class provides a negative method that is used to check
whether a number is negative. Note that this is not a library function, it is a true
instance method. Therefore, to determine if the number 5 is negative, Smalltalk calls
the negative method of the class instance ‘5’, which will return false, an instance
of the class Boolean. In C++ style syntax this would look like if(5.negative)....

To perform operations Smalltalk objects pass messages to each other, as can be
seen in the following example:

mynumber := ‘18’ asNumber.
mynumber := mynumber factorial.
mystring := mynumber printString.

In the above code, an instance of the class String (‘18’) is sent the message
#asNumber which causes it to be interpreted as a numerical string and returns a
number object (18), which is saved in the variable mynumber. Then the mynumber
variable is sent the #factorial message and the resulting number object is stored
back in mynumber. Finally the #printString message is sent to mynumber which
causes it to be reinterpreted as a string. As Smalltalk can deal with arbitrarily large
numbers, the program ends with mystring holding a reference to a instance of the
String class with data ‘6402373705728000’.

As previously mentioned, Smalltalk offers a great deal of reflective mechanisms to
the programmer. For example, it is possible for an object to examine its own runtime
stack or to refine the methods that it implements at runtime. Also, code blocks can
be passed between objects and their contents examined and altered before being
executed. This gives rise to the concept of classes cooperating to construct other
classes, and is linked to metaobject protocols which are discussed in section 2.6.
Figure 2.11 shows an example of one of the ways in which Smalltalk implements
introspection and intercession.

2.6 Metaobject protocols (MOPs)

Often strongly related to the concept of computational reflection is the metaobject
protocol. Described by Chiba [12], a metaobject protocol is a technique which al-
lows programmers to customise the behaviour or implementation of a programming
language. A common aim of such a technique is to balance the theoretical purity of
high-level languages such as Prolog or Scheme with the high performance of more
common lower-level languages like C or C++.

In an object-oriented language, runtime objects are instantiated from a more abstract
view that is generally known as a ‘class’. Classes describe the common behaviour
of all derived objects, commonly by defining member variables or methods that other
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"Declare 4 local variables for use."
| x y className methodName |

"Set className and methodName to string values."
className := ’MyClass’.
methodName := ’aMethod’.

"Evaluate className as code, rather than a string."
"x is set to the result of the evaluation."
x := Compiler evaluate: className.

"Check that the evaluation succeeded by asking if x"
"is a subclass of the class Class. Class is the ancestor"
"of all classes in Smalltalk and a descendant of the"
"Object class, the root of the hierarchy."
(x isKindOf: Class) ifTrue:
[

"The evaluation was successful so create a new instance"
"of MyClass. Save it in y."
y := x new.

"Ensure that y will respond to the method ’aMethod’."
(y respondsTo: methodName asSymbol) ifTrue:
[

"It will, so execute it."
y perform: methodName asSymbol

]
]

Figure 2.11: An example of Smalltalk’s reflective capabilities. Smalltalk comments
are enclosed in double quotation marks ("").
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Figure 2.12: A metaobject protocol implemented above the layers of a standard
object-oriented language.

classes can call, and it is at this level that all conventional object-oriented languages
such as C++ and Java 6 operate. It is however possible to raise the object abstraction
to the next level and to introduce ‘metaobjects’. Metaobjects describe metaclasses
which can be instantiated to obtain a normal class. This class must then itself be
instantiated in order to obtain a runtime object. The benefit of this is that metaob-
jects can describe the behaviour of a wide range of classes and so can therefore
reason about the way in which such classes interact. This is known as a metaobject
protocol. Note that whilst metaobject protocols have been used extensively in the im-
plementation of reflective systems, metaprogramming itself is not reflection. Instead,
it simply refers to the use of a higher abstraction level than that is normally afforded
by object-oriented programming. Similarly, reflective techniques are not required to
implement a metaobject protocol, although they are frequently used.

The next sections describe two of the more commonly used metaobject protocols,
The Common List Object System Metaobject Protocol and OpenC++.

2.6.1 The Common Lisp Object System Metaobject Protocol

The Common Lisp Object System Metaobject Protocol (CLOS MOP) [36] is credited
with being the first fully developed metaobject protocol and was developed as an
extension to the Common Lisp Object System (CLOS). The CLOS is itself an exten-
sion to the declarative language Common Lisp that adds a complete object-oriented
programming system. CLOS became so widely used that it is now an ANSI stan-
dard. The CLOS MOP is built on top of CLOS and is cited by most authors as the
archetypal MOP.

Like all MOPs, the CLOS MOP was built to allow the programmer control over the
implementation of the host language. It does this by enabling a number of reflective
techniques, specifically programs can inspect the internals of a CLOS environment
and also extend the CLOS language itself. This corresponds to aspects of both
structural and behavioural reflection.

Like all metaobject protocols, the CLOS defines a metalevel architecture. As ex-
plained by Paepcke [48]:

“[This] describes the components of the system, its structural and proce-

6Java does actually provide some support for metaprogramming but it is rather undeveloped.
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dural building blocks and how they are put together. Examples of major
building blocks are the manifestation of classes, slots7 or methods in the
language’s implementation.”

The CLOS MOP also defines a set of protocols which describe the ways in which
the above building blocks can be manipulated to affect the runtime behaviour of
the language. For example, at the times when a new class is defined the system’s
behaviour is governed by the class initialisation and finalisation protocols. These
specify the runtime activities that together describe the process of defining a new
class. Therefore, it can be said that the MOP operates at an abstraction level that is
higher than the base language, and instead describes a metalevel view of the CLOS
where its concepts are defined abstractly. By changing these protocols it is possible
to affect a large amount of the way in which the CLOS is implemented.

The CLOS MOP is a runtime MOP, meaning that the metaobjects that describe the
system exist and can be called and interacted with whilst the program is executing.
Whilst this results in the highest level of reflective flexibility, it does require that the
language is interpreted and therefore it executes slower than a compiled language.

2.6.2 OpenC++

OpenC++ [12] is a metaobject protocol for C++ that, like the CLOS MOP, allows for
the language to be extended by meta-level programs written by the programmer. If no
such meta-level program is given then OpenC++ is identical to C++. Unlike the CLOS
MOP, however, the metaobject hierarchy is only available during the language’s com-
pilation phase and not to the program at runtime. As a result, OpenC++ executes as
efficiently as a normal compiled C++ program and displays no other overhead, but
none of its meta-level techniques can be used during execution because the MOP
only exists whilst the program is being compiled. In effect, the OpenC++ MOP gov-
erns the translation from OpenC++ to C++ and the implementation of that C++ code,
rather than its runtime behaviour.

An important aspect of the power afforded by OpenC++ is that it allows for the C++
language to be extended in a number of ways by the application programmer. Whilst
not as general as the extendability of CLOS or Smalltalk, OpenC++ allows for new
class modifiers, access specifiers, loop styles and closures to be defined. For exam-
ple, the notion of distributed computing could be introduced to OpenC++ through the
MOP, and a new class modifier defined - distributed - that is used to separate the
distributed classes.

distribute class MyClass{ ... };

This code would have been syntactically incorrect before the language extension,
but it can now be accepted and will affect compilation accordingly.

OpenC++ uses a two-stage compilation strategy that can be seen in figure 2.13.
First, the meta-level program which deals with all aspects of the MOP is compiled
using the OpenC++ compiler to create a compiler extension library. Then, this li-
brary is dynamically linked back into the compiler and used to compile the base-level

7Slots in Lisp are the constituents of a record or ‘struct’ type.

32



2. Literature Review

Meta-level 
program

Compiler 
Library

Base-level 
program

Object 
Code

OpenC++ 
Compiler

C++ 
Compiler

OpenC++ 
Compiler

C++ 
Compiler

Figure 2.13: Overview of OpenC++ compilation

program (which does not concern the MOP in any way). The act of linking in the
extension library has the effect of changing the compiler’s behaviour and allowing it
to accept programs that use extended syntax or metaobjects. In this way, the meta-
level program controls the way in which the base-level program is translated from
OpenC++ to normal C++. A normal C++ compiler is used to obtain object code from
the result of this translation.

The obvious limitation of this technique is that the final compilation stage concerns
only standard C++, and no metaobjects are present in the program at this point. The
created executables have no greater power or expressive ability than one generated
by standard C++. Instead, OpenC++’s strength lies in the way that it makes it easier
to program complicated concepts by allowing language extensions and reflection on
the OpenC++ compiler. This is shown in the development of the FRIENDS system,
detailed in the following section.

2.6.3 The FRIENDS System

The FRIENDS system developed by Fabre and Perennou [23] is a set of meta-level
libraries that allow for the development of group-based distributed applications with
fault tolerance and secure communications. Developed in OpenC++, it is a good
example of how metaobject protocols can be used to address higher-level concerns
than that of base-level functional code. Applications can use the provided metaob-
jects transparently to add properties to their communication methods without any
extra work from the programmer. Indeed, one of the stated aims of FRIENDS is to
add meta-level properties to application code that are normally only provided by the
operating system (which can be seen to be meta-level software).

The FRIENDS framework allows the application programmer to add fault tolerance
mechanisms to an application simply by connecting the appropriate metaobject to
the objects in their code. Most often, when developing an application which uses
FRIENDS it will be written in standard C++. The only additional code is the OpenC++
MOP reflect declaration, which connects a base-level object to a metaobject. An
advantage of this is that because all the FRIENDS metaobjects provide the same in-
terface, communication mechanisms can be exchanged simply by switching metaob-
jects. It is possible to first develop an application locally in order to test its functionality
and interactions, and then after these tests have been completed the communication
metaobjects can be connected to make the application distributed and fault-tolerant.
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As with all object-oriented systems, it is also possible to extend the metaobject sys-
tem provided by the framework to develop custom communication mechanisms.

FRIENDS greatly assists the programmer to create applications with complex com-
munication models, but due to its use of the OpenC++ MOP it can only be applied
to programs written in C++. To partly address this, a metaobject-based fault-tolerant
communications framework that is compatible with the CORBA ORB has also been
developed. [39] Another problem is that FRIENDS does not allow for metaobject
inheritance, so handling method inheritance in application-level objects is not cur-
rently possible. Also, as OpenC++ is a compile-time MOP it is not possible to adapt
the communication style at runtime without extending the FRIENDS framework itself.
For example, two communicating nodes in an embedded system may wish to com-
municate using a complex fault-tolerant protocol, but then to revert to a simpler, less
robust protocol if battery power is low. This would not be possible without adding a
new metaobject for this style of communications into the framework.

The final point which applies to many such meta-level techniques concerns verifica-
tion of the final system. When applied correctly, systems such as FRIENDS can aid
correctness verification as they reduce the amount of application code by encapsu-
lating the communication logic in a single fixed library. Once the correctness of the
FRIENDS library and the OpenC++ meta-level compiler has been verified the task of
verifying a new application is simplified.

2.7 The inheritance anomaly and Aspect-Oriented Pro-
gramming

The inheritance anomaly is an important observation that was first coined by Mat-
suoka and Yonezawa [44] in 1993, although the problem had been studied before
then. It refers to the inherent problems that arise when attempting to combine in-
heritance and concurrency in concurrent object-oriented languages. Essentially the
issue arises from the fact that most standard object-oriented languages require be-
havioural code and synchronisation code to be mixed together in class definitions,
resulting in classes that are difficult to inherit from whenever alteration of the class’s
synchronisation constraints is required. A number of slightly different versions of the
anomaly can be observed, and these are exemplified in [46] using the pseudocode
example of a bounded buffer class.

class buffer{
void put(Object x) when <buffer is not full>}{ ... }
Object get() when <buffer is not empty>{ ... }

}

The method declarations record two synchronisation constraints; that the buffer should
only be read from when it contains data and only be written to when it is not full. How-
ever, if a new type of buffer that is dependent on its past history is desired then the
first form of the anomaly is observed. For example, the history-dependent buffer may
state that an invocation of get may only take place after at least 4 invocations of put,
but the rest of the buffer’s operation is identical. Whilst it may sound like the history
buffer can inherit from the standard buffer, in fact both the get and put methods
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must be rewritten to count and check the number of put invocations. This results in
the entire buffer being rewritten.

The other two versions of the anomaly are observed when an object’s internal state
affects the synchronisation constraints. Using the buffer example, the buffer can be
thought to be in one of three states; empty, partially-full and full. get must ensure
it can only be called when the buffer is in the partially-full or full states, but it is
also responsible for updating the current state of the buffer from full to partially-
full or from partially-full to empty as required. Now, if a new method is added that
requires another state option then all other methods must be rewritten so that they
will correctly change the buffer to this new state when they are invoked. This means
that once again the entire buffer has been rewritten.

The third version of the anomaly is similar and is involved with synchronisation con-
straints that are affected by another object that is external to the class under synchro-
nisation. For example, the above buffer may be extended using multiple inheritance
to include a semaphore class, but all its methods must still be rewritten in order to
ensure that they actually set and check the semaphore.

Essentially, the inheritance anomaly states that in the general case a derived class
will end up reimplementing all the methods of its parent class if there is any change
in its synchronisation constraints. This is a problem because it reduces code reuse
and results in larger, more complicated programs.

2.7.1 Aspect-Oriented Programming (AOP)

It is impossible to formally prove that a language is susceptible to the inheritance
anomaly, or indeed that it avoids it completely [45] but a lot of research has been
undertaken recently to develop languages that attempt to use the principle of sep-
aration of concerns to reduce its effect. The aim of these languages is to specify
synchronisation constraints away from the behavioural code, thereby allowing one to
be altered without affecting the other. As described by Filman and Friedman [24]:

“AOP can be understood as the desire to make quantified statements
about the behaviour of programs, and to have these quantifications hold
over programs written by oblivious programmers.”

In other words, AOP attempts to give programmers the ability to define properties
of a program’s behaviour, and for these properties to still be enforced elsewhere,
perhaps even in code written by other developers.

The most common techniques that are employed to achieve this goal are variations
on an emerging programming style known as Aspect-Oriented Programming (AOP).
AOP was introduced by Kiczales [35] in the mid 90s as an extension of their work
on metaobject protocols. It is based on the idea that a program’s design consists
of a number of interacting aspects that define its operation. Common examples of
aspects are behaviour, synchronisation constraints, failure handling, event logging,
and peak memory usage. They argue that even though there are many aspects in a
given system, functional behaviour is the only one that can be adequately described
by current programming languages due to the fact that aspects tend to affect many
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Aspect A Aspect BActual System

Figure 2.14: Aspect-Oriented Programming attempts to separate the actual system
into a set of system models. Each model shows the system in terms of a different
aspect.

different areas of the system and they commonly overlap with each other. This is
termed cross-cutting in AOP parlance. The goal of AOP, therefore, is to provide a
means for the programmer to separate out these aspects in the manner shown in
figure 2.14. It is important to note that whilst reflection and metaobject programming
are commonly linked to AOP they are merely convenient implementation methods
and are not specifically required by the paradigm.

In an AOP implementation, the point at which the procedural code is joined together
with the aspect code to produce the final behaviour is known as weaving. There
are two broad categories of weaving, static and dynamic. Static systems weave at
compile-time and can often be likened to a very flexible code preprocessor. Dynamic
weaving is performed at runtime and is essentially the same as static weaving, except
that aspects can be reprogrammed and moved around during the execution of the
program. Currently, the most developed AOP implementations only support static
weaving and dynamic weaving is limited to research languages.

2.7.2 AspectJ

AspectJ [38] is an extension to Java that adds many aspect-oriented features to the
language. As it is a proper superset, all valid Java programs are also valid AspectJ
programs. Since its initial development in 2001, it has become one of the most
commonly cited examples of a static AOP language and is still supported by an
active development community.

AspectJ extends Java to include the concept of aspects which are modelled as a
collection of four new concepts:

• Join points

• Pointcuts

• Advice

• Inter-type declarations
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Join points are a way of referring to specific points in the source code. These may
be method calls, exception handlers, variable assignments, initialisations or other
points of note. A set of join points can be collected together and referred to by a
single name, which is termed a pointcut. Pointcuts contain no extra sematic meaning
and are simply shorthand for describing many point cuts at once. Advice blocks are
blocks of code that are executed when control flow reaches a specified join point
or pointcut. It is with advice blocks that AspectJ injects new code into the user-
level program. Inter-type declarations allow a programmer to add methods, fields, or
interfaces to existing classes from within an aspect. This is used to extend a set of
classes in a general way, without having to change their source code. Some of these
features can be seen in the following example.

aspect Logging
{

//Pointcut
pointcut resourceAlloc():

//Join points
//Calls to someClass.allocate
call(int someClass.allocate(..)) ||
//Calls to someClass.getRes
call(int someClass.getRes(..)) ||
//Initialisation of resType objects
initialization(resType);

//Advice
before() : resourceAlloc()
{

writeToLog("Attempting to get a resource");
//other log processing activities...

}
after() : resourceAlloc()
{

writeToLog("Resource allocation successful");
}

}

The code above shows an aspect that encompasses part of the logging requirements
of a hypothetical system. It is intended that every time a system resource is allocated
a note is made in the system log. Without AOP this would have to be achieved
by rewriting every allocation of the resource to call the allocation routine through a
logging procedure instead. This method is unsatisfactory because if there is a later
change in the logging requirements of the system then the code must be amended
at multiple points, increasing the possibility for errors to be introduced into the code.
Also it is possible to inadvertently omit some allocations or to incorrectly rewrite them,
introducing errors into the logging code.

The example overcomes this problem and describes the intended behaviour using
the pointcut resourceAlloc. Specifically, resourceAlloc is comprised of two
calls to specific methods (someClass.allocate and someClass.getRes) and
the initialisation of objects of the class resourceClass. These are the three re-
source allocation routines that are to be logged whenever they are called. The aspect
then gives advice about what to do when the pointcut resourceAlloc is encoun-
tered, which in this case involves writing to the system log. Note that advice can
occur both before and after a pointcut is executed. The result of the code above is
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that all calls from anywhere in the source tree to the three allocation routines are
guaranteed to also call the logging routines without any input from the programmer.
This is error-free and it is much easier to debug because the entire extent of the log-
ging code is contained within a single aspect, rather than throughout the program’s
source code.

2.7.3 Other AOP implementations

PROSE [50] is an AOP implementation based on Java that allows the programmer
to perform dynamic weaving and thereby affect the behaviour of objects at runtime.
Often, dynamic solutions are implemented using reflection or a metaobject protocol,
but PROSE instead performs its weaving directly in the Java Virtual Machine and
inserts aspect advice directly into the the code generated by the just-in-time compiler.
This results in a very efficient solution.

AspectWerkz [5] is another dynamic framework that performs its weaving by directly
editing the compiled object’s bytecode to insert and remove advice as required. Un-
like the other solutions, however, AspectWerkz separates aspect information from
source code by storing it in accompanying XML documents.

2.8 Conclusions

This literature review has examined embedded systems and the way in which they
have changed over the past decade. It has also covered the design flow of embedded
systems and looked at the reasons behind the recent trend to move from standard
monolithic circuit designs to ones that incorporate the System-on-Chip and Network-
on-chip paradigms.

The review then proceeded to look at FPGAs and their applicability for implementing
embedded systems. The FPGA design flow is explained, and from this the chapter
proceeds to examine the methods that are used when describing hardware designs
with a software language. This includes hardware description languages, such as
VHDL and Verilog, and high-level languages that can be targeted towards hardware
using a logic synthesis tool, such as HandelC, Ravenscar Ada, and Lava. Exam-
ples of such languages are considered and their relative strengths and weaknesses
are highlighted. Hardware/software codesign is also discussed briefly along with its
merits and shortcomings.

The review then considers techniques from the software domain that attempt to make
programming languages more flexible by opening up their implementation to the user.
Reflection is introduced and examples are given in the language Smalltalk. Metaob-
ject protocols are then discussed and shown to be often linked to reflection. The
CLOS and OpenC++ MOPs are considered and the FRIENDS system that makes
extensive use of a MOP is detailed. Finally, Matsuoka and Yonezawa’s inheritance
anomaly is mentioned along with its ramifications for the use of inheritance in con-
current object-oriented languages. This leads on to the concept of Aspect-Oriented
Programming, which is one of the first attempts to mitigate the anomaly’s effects.
Examples are presented in AspectJ, the archetypal AOP language.
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Initially a niche market, embedded systems are now present in a continually increas-
ing proportion of daily life, and as a result they are expected to become more powerful
whilst maintaining their reliability and limiting their power consumption. This makes
them harder to design and increases their entry cost and time-to-market. High-level
synthesis was an attempt to mitigate these factors by automating some aspects of
the design process and increasing the productivity of the designer. However, in prac-
tice high-level synthesis is rarely suitable for use on an entire system, only specially
selected parts of it. It is clear that hardware design must increase in abstraction from
the HDL level in order to facilitate the creation of ever larger systems, as happened
in the software domain with the introduction of high-level languages. Current high-
level synthesis solutions are a step in the right direction but prove inadequate in a
number of important areas as they abstract away important details that the designer
may need to control.
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Chapter 3

Preliminary work

One of the most important points identified in this document is that current high-level
synthesis techniques do not appear to be a suitable choice for designing anything
but the simplest systems. This chapter attempts to highlight some of the reasons
behind this and discusses the limitations that are placed on system designers when
high-level synthesis is employed.

3.1 Description of the problem

Current HLLs employ abstraction to make software development easier and more
productive. They remove the need to describe fixed parts of the target implementa-
tion (such as memory maps or device I/O) and rely on tool support from compilers
and assemblers to automate many programming tasks. In the majority of languages
the primitive building blocks (such as data types, I/O channels or mathematical op-
erators) are fixed and their implementation is defined by the compiler. This model
works well in the software domain because all software is executed on an unchang-
ing von Neumann architecture. However, in the hardware domain this is not the
case and the designer rather than the compiler needs to control the implementation
scheme.

For example, when creating a DSP system it is common to use processors with
custom instructions that are tailored to the intended application. Standard HLLs
such as C provide operators for addition (+) and subtraction (-) because they are
common to all PC CPUs, but custom instructions cannot be used in the same way as
first-class parts of the language. This means that a synthesis tool based on C cannot
correctly express the custom DSP chip. This does not simply apply to mathematical
operators however and often designers create architectural features like busses or
on-chip networks that similarly cannot be expressed by any HLL. In general, if a
concept cannot be expressed by the language, then a synthesis tool will not be able
to correctly infer its use and implement it.

Related to this is that fact that most languages can only describe concepts at their
highest level of abstraction and provide no means of expressing implementation de-
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Source code
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(types, operators…)
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implementation
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Figure 3.1: Abstraction levels exposed to the user by current hardware description
languages. Handel-C only allows the user to describe systems at the highest levels
of abstraction, apart from a small number of pragmas.

tails in a more concrete form (see figure 3.1). For example, a designer writing a case
statement in C cannot drop a level of abstraction and choose whether it should be
implemented as an indexed jump table or as a list of conditional jumps.1

Finally, HLLs also cannot adequately describe the non-functional constraints of com-
ponents and so a HDL must often be used instead when timing or design size is
important. Whilst it may be more difficult to work with, the lower level of abstraction
afforded by HDLs allows for greater control over the final hardware. This leads to the
situation depicted in figure 3.2 where, for example, Handel-C is used to implement
high-level control circuitry but when greater implementation control is required VHDL
components are used. The VHDL component is used to dig through the abstraction
to expose a lower-level interface to Handel-C. The problem of languages only oper-
ating at a single abstraction level is starting to change with languages that are based
on meta-object protocols (see section 2.6) but currently no such language exists for
hardware synthesis.

All of these problems mean that existing high-level synthesis systems produce cir-
cuits that are inefficient for the majority of designs.

3.2 Problem analysis

To further understand the problem discussed above, this section presents an ex-
ample application and then discusses possible descriptions of the system in two
common languages, Ada and Handel-C. The aim was not to attempt to actually im-
plement the example system; clearly this is impossible when using Ada as it is not
a hardware description language. Instead, the example attempts to illustrate which
aspects of the desired architecture can be sufficiently described (and therefore in-
ferred) by a synthesis tool and which aspects cannot be described because of a lack
of expressive power.

1C does allow the programmer to insert inline assembly code but this would not be of use because the
jump addresses are not known until after compilation and assembly.
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Interface
(VHDL)Data In

High-Level Control (Handel-C)

Data distributed to 
rest of the system

Control signals 
from system

Figure 3.2: A VHDL component inserted into a Handel-C design. In this example,
Handel-C is incapable of adequately describing the non-functional properties of the
interface so a VHDL model is used instead. The VHDL model then provides an
interface that the rest of the system can use.

Ada is used in this example because it is a modern programming language that
displays many of the common trends of imperative software languages and recent
work [57] has shown success in re-targeting a subset of Ada to hardware. Handel-C
is explored because it is a well-known high-level hardware description language that
has gained acceptance in both industry and academia.

3.2.1 The desired architecture

The example used is a simplified control system for a robot that can react to its
surroundings based on input from both a video camera and other sensors. The ar-
chitecture of this control system is shown in figure 3.3. The vision system processes
the incoming video stream using a range of filters to extract useful information about
the environment and passes this information on to a main reasoning processor. This
processing is performed with a pipeline comprised of three stages, with each stage
feeding results to the stage directly following it. Other sensors detect features such
as pressure and temperature and make this information available also. In order to
interact with its environment, the robot is equipped with actuators that are controlled
by a dedicated ‘actuator control’ module.

In order to reduce power usage the control system uses a network to pass informa-
tion between processing nodes. As noted by Dally and Towles [14], networks com-
monly consume less power than bus-based solutions due to the reduced amount
of wiring required. Also, the asynchronous nature of networks allows nodes to op-
erate at different speeds, so less complex nodes can run slower and so therefore
consume less power. The network supports atomic broadcast which is used to im-
plement system-wide mode changes.

3.2.2 Ada description

A number of problems are observed when attempting to describe the architecture
shown in figure 3.3 in Ada. The most obvious of these is that the design requires a
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Figure 3.3: The desired robot control architecture. Dotted boxes denote different
clock domains.

set of timing domains to be defined, but Ada possesses no concept of clocks or timing
that can be used to do this. Due to this lack of clocking information, it is not possible
to separate Ada tasks into timing domains without the use of the Distributed Systems
Annex (DSA). Without this annex, tasks could either all be considered to be in the
same domain, or all to be clock independent and therefore in separate domains, but
not a mixture of the two. The function of the DSA is to allow a designer to sepa-
rate an Ada program into a number of partitions that each execute on a networked
computer. Within these partitions all tasks run at the same speed and all inter-task
communication is synchronous, but communication across partition boundaries is
asynchronous. Partitions are heavyweight entities; all inter-partition communication
is implemented as a form of remote procedure call and calls are marshalled through
the RPC stack for transmission over the network infrastructure. Such a sizable com-
munications overhead makes DSA partitions unsuitable for use in separating small
areas of a design.

The architecture of the vision pipeline intends incoming data to be processed as
a continuous stream, however this cannot be sufficiently described by Ada so as
a result the pipeline stages must be formulated as concurrent tasks with shared
memory. When operation A begins, it loads data from memory, processes it, then
writes it to the input buffer for operation B. Then, operation B must load the same
data back out of memory in order to continue processing. Whilst this captures the
semantics of the overall application, it is inefficient.

The two separate memory banks of the example architecture could not be cleanly
modelled in Ada as it does not allow for such low level control over memory partition-
ing. Like almost every other general purpose programming language, Ada assumes
a single pool of shared memory for all tasks and processes. Some separation can be
obtained by using representation clauses to specify fixed addresses for all variables,
and then splitting the memory banks based on address. This would allow variables
to be placed into specific chips, but does not give control over the heap or other
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protected Network is
entry WaitForPacket(P : out Packet);
entry SendPacket(P : in Packet);

private
CurrentPacket : Packet := None;

end Network;

protected body Network is
entry WaitForPacket(P : out Packet)

when CurrentPacket /= None is
begin

P := CurrentPacket;
if WaitForPacket’Count = 0 then

CurrentPacket := None;
end if;

end;

entry SendPacket(P : in Packet)
when CurrentPacket = None is

begin
CurrentPacket := P;

end;
end Network;

Figure 3.4: An Ada representation of a network that supports atomic broadcast.
From inspection it is possible to observe that all readers will receive each transmitted
packet, but there is no way of directly expressing this property in the language.

dynamic memory structures.

The network poses specific problems. As previously mentioned there is no way of
describing multiple clock domains in an Ada program without using the DSA, and
when using this method all inter-partition communications must be handled by re-
mote procedure call mechanisms. It follows from this that it is possible to describe
the network’s high-level semantics, but not the low-level matters of network protocol
which are performed automatically by the annex. Assuming that network nodes are
modelled as tasks, network interactions must be described using Ada’s inter-task
communication mechanisms. However, in Ada all inter-task communication is one-
to-one and so in order to distribute a packet to all potential receivers it is necessary
to create an implementation like the one shown in figure 3.4. Whilst this would give
the correct overall behaviour of an atomic broadcast, it is inefficient, displays very
different timing properties and the meaning of the operation becomes obfuscated
from the final code.

Also, in this implementation each packet arrives in a single operation, making it im-
possible to take action on a per-bit basis. For networks such as CAN which use
bit-level arbitration this is clearly insufficient. Also, the semantics of the protected
object used to model the network ensure that two packets will never be sent at ex-
actly the same time. Therefore packets will not corrupt each other and it is difficult to
introduce code that expresses the action to be taken when such an event occurs.

The ‘vision processing’ and ‘high-level reasoning’ modules in the example architec-
ture represent embedded microprocessors that execute code stored in their associ-
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Figure 3.5: The example system described in Ada. The distributed systems annex
is used to create separate clock domains but this requires all inter-partition commu-
nication to use the remote procedure call (RPC) mechanisms of the language. A
passive network object is required to simulate broadcast of packets because Ada
communications are one-to-one.

ated ROM and use their attached RAM for temporary storage. However apart from a
few pragmas, Ada does not allow the designer any control over the manner in which
code is implemented.2 Therefore, a hardware mapping of Ada would require all mod-
ules to be implemented in the same way, all as embedded processor cores or all as
dedicated hardware.

3.2.3 Ada results

Due to the difficulties listed in the previous section, one of the nearest descriptions
that can be obtained using Ada is shown in figure 3.5. The most striking difference
between this and the intended architecture is the way in which the separate clock
domains communicate. The example specified that a network should be used that
would reduce interconnection costs and support atomic broadcast. However, in or-
der to separate the Ada design into different clock domains the DSA had to be used.
As previously mentioned, the DSA requires all partitions to communicate using RPC
and as a result the broadcast facility of the network has to be simulated using an ex-
tra protected object and code like that of figure 3.4. Although the high-level behaviour
of this system is correct, the semantics of the network are completely disassociated
from the solution and a synthesis tool would not be able to infer the correct imple-
mentation.

2Ada representation clauses can be used to refine how individual variables or records are implemented
but the translations between source code and machine code are not configurable.
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The vision pipeline is also incorrectly implemented as it must be described as a set of
tasks running over shared memory. Ada does not allow low-level control over mem-
ory architectures so the result is a sub-optimal solution which displays the constant
copying problem and may also introduce extra bottlenecks as the tasks must nego-
tiate for control over the memory, reducing their ability to execute simultaneously.
Finally, as noted previously all design nodes are implemented as software running
on a CPU as Ada has no way of marking which code should be implemented directly
in hardware.

3.2.4 Handel-C description

As Handel-C is a hardware description language its semantics include a number of
hardware-specific features that Ada does not. For example, Handel-C includes low-
level bit manipulation and variables of explicit widths. However, as a language it is
not as expressive so higher-level concepts that Ada can use Handel-C cannot.

One major difference between the languages is the way that they handle concur-
rency. Handel-C uses the par statement to indicate instructions that can be executed
at the same time. This allows for very fine-grained concurrency of individual state-
ments whilst coarse-grained concurrency must be simulated, usually by enclosing
function calls in a par block. Ada does not provide support for fine-grained con-
currency but does support true coarse-grained concurrency with its tasking model.
Ada tasks are heavyweight objects but they can be effectively used to represent in-
dividual system modules. Conversely, Handel-C does not explicitly separate system
modules at all and instead treats the entire program as a single monolithic circuit.
Therefore, Handel-C makes it difficult to discuss the ways in which system modules
should interact as there is no concept of modular decomposition in the language.

Handel-C projects can only communicate across clock domains using channels,
which causes a problem when attempting to implement a network in Handel-C. Chan-
nel communication is one-to-one only, so therefore to simulate a network which im-
plements broadcast it is necessary to create a ‘network controller’ with a pair of chan-
nels (receive and transmit) that is connected to each normal network node. When-
ever a node sends a message through its transmit channel, the controller echoes the
message to all receive channels. This is shown in figure 3.6. This is very unwieldy
as the implementation must be changed to incorporate different numbers of nodes
and a synthesis tool will not be able to infer a network structure from this code. Also,
the message is not received simultaneously by all readers.

Many of the other problems exhibited by Ada are also present in Handel-C. As noted
previously, the vision pipeline would be best implemented as a data stream but be-
cause this cannot be directly expressed in Handel-C registers are automatically syn-
thesised between pipeline stages and so the constant copying problem arises. Also,
Handel-C does not provide a method that would be suitable for tagging code to be
compiled to softcore instructions rather than synthesised to hardware.

One advantage that Handel-C has over Ada is the way that it can express memory.
Handel-C allows the designer to describe memory layout easily by declaring RAM
and ROM chips with language keywords. To declare a block of RAM that is 8 bits
wide and 16k words deep the designer can use:
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chan 8 node1_to_net, node2_to_net, node3_to_net;
chan 8 net_to_node1, net_to_node2, net_to_node3;

void network_server{
int 8 message;

while(1){
//Wait for message
prialt{

case node1_to_net ? message:
case node2_to_net ? message:
case node3_to_net ? message:

break;
}

//Echo it to all nodes
net_to_node1 ! message;
net_to_node2 ! message;
net_to_node3 ! message;

}
}

Figure 3.6: A Handel-C implementation of a network supporting broadcast. Data is
written onto the network a byte at a time and echoed to all nodes. Simple extensions
can prevent echoing to the transmission source or protect the server from locking
on non-responsive reader node.

ram unsigned 8 VideoRAM[16384];

This can then be accessed like an array according to normal scope rules. A ROM is
declared in a similar way and its contents can be specified in an initialiser. Normally,
Handel-C will attempt to synthesise RAM and ROM from the target architecture but
attributes can be added to the definition to specify that they are ‘off chip’. Memories
declared in this way are assumed to be separate chips that will be connected to the
design when it is implemented.

3.2.5 Handel-C results

Figure 3.7 shows one of the closest possible implementations when describing the
example system in Handel-C. As with the Ada solution in section 3.2.3, the network
displays the greatest variation from the original design. As previously discussed,
to overcome the one-to-one nature of inter-clock domain communications, multiple
channels and a network controller are used. This is an inelegant solution and it does
not accurately reflect the designed behaviour.

The other problems that are visible were also displayed by the Ada solution. The
vision pipeline is implemented with register banks between the stages due to the im-
plementation strategy of the Handel-C synthesis tool. This is a slightly better solution
than was afforded by Ada as the stages do not all compete for access to a shared
memory module, however buffering should not be required at all and as a result they
introduce inefficiency. Finally, all modules are implemented as dedicated logic and
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Figure 3.7: The example system described in Handel-C. As with Ada, a network
controller is required to simulate broadcast of packets because Handel-C channel
communications are one-to-one.

none use a softcore because, as with Ada, this cannot be expressed in the language.
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3.2.6 Summary

The following table lists the major features of the example architecture and discusses
whether or not they could be accurately described by either Ada or Handel-C.

Feature Can be described?
High-level sys-
tem behaviour

Yes. Both languages allow the high-level aspects
of a system’s operation to be described with little
concern for lower level implementation details.

Concurrency Yes. Ada tasks are notionally concurrent (coarse-
grained) and Handel-C supports operation-level
parallelism (fine-grained).

Separate clock
domains

Partial. Both languages support such a feature,
but their implementations are limited. In Ada, the
DSA must be used which places tight constraints
on communication. In Handel-C the partitioning is
done outside the language and does not support
modular design.

Non-uniform
memory archi-
tectures

Partial. Handel-C allows explicit definition of RAM
and ROM chips, registers are inferred for other
variables. Ada provides no support for this and a
shared memory model is assumed, with different
DSA partitions having a different memory scope.

User-defined
communications

No. Communication methods between concur-
rent blocks are limited to a few language-defined
options that the user cannot extend. (Ada ren-
dezvous and POs, Handel-C channels) Both lan-
guages enforce a single cross-timing domain com-
munication method. (Ada RPC, Handel-C global
channels) Networks, for example, cannot be de-
scribed.

One-to-many
communications

No. All communication must be one-to-one in both
languages and it is impossible to express some-
thing of the form (X and Y) := Z. This is easy to
construct in VHDL. The behaviour of one-to-many
communications can be simulated, but the seman-
tics do not exist to describe it adequately.

Use of softcores
versus dedi-
cated hardware

No. Both languages have a single, fixed imple-
mentation strategy. It is impossible to hint at the
method in which a concurrent block should be im-
plemented.

Streams,
pipelines

No. Both languages do not support pipelining.
When an operation completes both languages
store the result to memory (or a register) automat-
ically.

From examining the table above, it can be seen that both languages are able to
describe the high-level functionality of a system adequately, but the adoption of a
high abstraction level causes the implementation details to be inaccessible. The
process of elaborating the system specification to a low-level implementation cannot
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be controlled, and so any decisions made by the synthesis tools are fixed. This
primarily appears to affect communication between design entities. From the high-
level system view, variables are simply read and assigned to. However, there are a
great many different ways in which information can flow, be it a network, shared bus,
dedicated connection, shared memory or another custom communication method.
Whilst functionally similar (the data flows from source to target) they all have very
different non-functional properties and can drastically affect the effectiveness of the
solution.

Neither of the languages integrate clock domains into their syntax. Whilst they each
provide limited support for separate clock domains, they are very coarsely-grained
approaches that are performed at a program-wide level whereas a more suitable
solution would allow for the mapping of parallel blocks to different clock signals.

It is not possible in either language to designate some aspects of the system as
hardware and some as software. The same implementation strategy is used for the
entire system and to describe the use of a softcore the designer would have to create
the softcore from scratch, manually compile the code they want it to run, and then
store this code in a linked program ROM.

Another problem highlighted by this study is that there is no link between the ca-
pabilities of the implementation fabric and the way in which it is used. FPGAs are
very diverse and often include many embedded modules such as processing cores,
memory or multipliers in addition to the reconfigurable array. The use of these from
a high-level synthesis solution is often impossible, however, because they are not
directly expressible by the source language. Vendor-specific tools can infer the use
of multipliers and memory chips, but not modules such as processor cores or net-
work interfaces. As a result, it is not possible to describe a system that uses these
modules.

In summary, the implementation scheme used by high-level synthesis systems is a
compromise that gives decent performance across the majority of its expected uses
but very poor performance in other situations. There are only a few situations where
hints or pragmas exist that can change the default behaviour; Handel-C’s RAM and
ROM statements are one such example. Therefore, the designer is forced to either
accept the way that the synthesis tool builds implementations, or to attempt to coerce
it into a more appropriate solution by programming in a stylised manner.
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Chapter 4

Research Proposal

The literature survey conducted in chapter 2 has highlighted a number of potential
avenues for further research. It has been determined that current high-level synthe-
sis techniques are insufficient for designing most embedded systems and so it is this
problem that is to be the focus of the proposed research. This section introduces the
main research questions that are to be addressed by forthcoming work.

4.1 Research questions

Embedded systems are most commonly designed using Hardware Description Lan-
guages but due to the relatively low level of abstraction afforded by such languages,
synthesis tools that operate on higher-level languages like C or Ada have been devel-
oped. These solutions are not satisfactory, however, because they do not present the
designer with the sufficient expressive power to represent many of the newer design
trends, such as the use of on-chip networks. It appears that one of the main reasons
for this is that their implementation is fixed with the language definition. Aside from
a few explicitly defined parts of the language, the designer is given no influence over
the translation from their source code to a circuit description. No matter what the in-
put code, a high-level synthesis engine will always use the same synthesis approach;
a compromise that will be appropriate in some situations but poor in others.

Another important factor that contributes to the inefficiency of high-level synthesis so-
lutions is that they use an abstraction model that is taken from the software domain
and attempt to apply it to the hardware domain. To explain why this is incorrect, con-
sider that when writing software the implementation architecture is already known. In
the standard PC architecture a CPU is connected to a single block of shared mem-
ory which contains both data and code. Peripheral devices are memory mapped and
interrupt schemes are predetermined. Although some systems may offer multiple
execution units, this is masked by the underlying hardware and operating system.
As a result, the application programmer does not need to consider these details
and instead relies on the compiler, assembler and linker to assist in code genera-
tion. Whilst the compiler will add a slight inaccuracy when compared to handwritten
opcodes, because the process is largely automatic a very high quality translation
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is generally achieved. This abstraction has enabled programmers to become more
effective and write a greater volume of code.

In the hardware domain, however, none of the above constants apply. Rather than
writing software to execute on a fixed architecture, the software is in fact attempting
to describe the architecture itself. This does not present a problem when using a spe-
cially designed hardware description language like VHDL, but it does when using a
software language like C. High-level languages are so named because they contain a
certain level of abstraction that allows them to disregard architectural concerns. This
makes them insufficient to describe architecture in an unambiguous manner and so
current synthesis tools use a mixture of inference and fixed architectural strategies to
‘fill in the gaps’, but as previously mentioned these are a compromise and inappropri-
ate for some designs. It appears a self-imposed limit has been reached by high-level
synthesis and its inefficiencies will not be overcome without a radical redesign of the
way in which it is applied.

The main research questions proposed are detailed below.

4.1.1 How can implementation architecture be expressed from
within the source language?

Due to their origins as software languages, synthesised high-level languages can-
not describe many common architectural features that the designer may require. For
example, Handel-C only allows channels or signals to be used for communication be-
tween parallel blocks and the implementation of these is fixed. No provision is given
for asynchronous communication styles, such as networks, or custom communica-
tion methods that may make use of special on-chip resources. The same problem
can be observed with other high-level languages.

Similarly, non-uniform memory architectures are not always considered. Software
language implementations expect to operate in a von Neumann architecture with
all data stored in a single contiguous memory space. As a result unless specific
constructs are added to the languages, as in Handel-C, memory maps cannot be
correctly expressed. This problem affects synthesis of languages such as Ada, Java
and Lava.

Finally, multiprocessor architectures are not considered by any existing technique.
Whilst it is possible in many modern languages to split code into parallel tasks, the
actual assignment of these tasks to individual processor cores is performed outside
of the language by a static scheduler or by a run-time support system. Related to
this is the fact that languages assume a symmetric multiprocessor architecture but
asymmetric solutions are common in embedded systems where a powerful main
processor may be assisted by a number of smaller, less powerful support cores. As-
signing tasks to the correct cores is again something that must be specified outside
of the implementation language.

This question therefore asks if there is a way to express architectural information in
a high-level language in such a way that allows the synthesis tool to provide a better
implementation. This requires a more precise definition of ‘architectural information’
and consideration of the form in which it would take.
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4.1.2 How can the implementation of language constructs be in-
fluenced?

No current high-level synthesis language provides a mechanism for affecting the way
in which its synthesis tool implements a given language construct. Certain pragmas
may exist for special situations but in general the implementation strategy is fixed
and the designer cannot influence the toolchain in any meaningful way. It may be
possible to achieve a better solution if the designer can, when appropriate, give
extra information that allows for a tighter mapping between the source code and the
intended implementation. This would not be needed for the majority of the system,
only the times when the default solution is not good enough.

This type of facility is partially available in the software domain through the use of
reflective techniques and metaobject protocols that allow the implementation of a
language to be affected by application source code. No such techniques have been
applied to hardware design however, and their use in this context has not yet been
evaluated. It may be possible, through the creation of a reflective synthesis tool, to
build an extensible high-level synthesis language with an open implementation that
combines the abstraction of a high-level language with the expressive power of a
low-level HDL at the times when it is required.

This research question therefore asks in what ways the operation of the synthesis
tools can be influenced. Are reflection and MOPs useful techniques to achieve this
and if so do they need to be fully or partially implemented? Is it useful to only borrow
a small number of ideas from these techniques, or does the main benefit only result
from a more complete implementation?

4.1.3 How can non-functional properties be expressed?

Due to the abstraction models that they inherited from the software domain, syn-
thesised high-level languages lack the ability to express many of a system’s non-
functional properties. For example, whilst it is possible to express an arithmetic func-
tion that combines a set of variables, it is not possible to state that the power usage
of such a function should be kept below a certain level. Similarly, no high-level lan-
guage allows the designer to specify the amount of space a design should consume.
Were such facilities available, the synthesis engine could choose the implementation
style that the designer has deemed to be most appropriate.

For example, when synthesising an integer multiplication there are a number of op-
tions available. The fastest solution is a single-clock combinatorial multiplier that will
consume a great deal of logic and power but have the highest performance. Con-
versely, a shift-add multiplier could instead be built that takes many clock cycles to
complete but is much smaller and consumes less power. It is possible to envision a
synthesis system in which such decisions can be made automatically by the synthe-
sis tool according to the non-functional properties expressed by the designer.

It is unclear which functional properties would be useful to express and in what way
they would be used. The idea described above treats non-functional properties like
system constraints in a codesign system, but it is possible to also consider other
applications. For example, a system in which the designer can embedded the timings
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of a bus transaction and the synthesis tool will automatically create an interface to
match them.

4.2 Continuing work

The following table describes the timetable for the research that is to be completed
over the next 27 months. Approximately 1.5 months are unallocated to allow for
unexpected delays.

1. Investigate a number of different methods for controlling the implementation
strategy of the synthesis tool. These may involve the use of code templates,
extension of the language type system, reflective techniques, metaobject proto-
cols or some combination thereof. Determine in which ways the chosen method
can extend the facilities that are already available in existing synthesis systems
and which of these are the most important. (3 months)

2. Design and create a prototype tool that implements a basic set of synthesis
features and only the most important additions, as identified in the previous
stage. This prototype will not be able to synthesise an entire language, only
enough for it to be reasonably evaluated. (6 months)

3. Evaluate the prototype to determine if it is capable of producing designs that are
more efficient than is possible with existing systems. If the evaluation shows
that there is promise in the chosen method, extend the system to become a
complete synthesis tool by including support for an entire high-level language.
If not, determine why and explore other options. (10 months)

4. Evaluate the complete tool by comparing its output against that of existing syn-
thesis systems. A number of example designs will be created and implemented
for this purpose. (Less than 1 month)

5. Write up the final thesis. (6 months)
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